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ABSTRACT 

Weed infestation significantly hampers agricultural productivity, causing up to 34% crop yield loss 

globally, as reported by the Food and Agriculture Organization (FAO). Traditional weed detection relies 

on manual field inspection, physical removal, and scheduled herbicide use, which are often labor-

intensive, inefficient, and error-prone. These methods, including visual identification and handwritten 

records, lack precision and scalability, particularly for large-scale farms. Overuse of herbicides, crop 

damage, and dependency on skilled labor are common drawbacks, resulting in increased operational 

costs and environmental harm. To address these issues, this project proposes an automated, deep 

learning–based weed detection system designed to boost efficiency and accuracy in agriculture. The 

core of the system is a Convolutional Neural Network (CNN), which classifies weed species directly 

from field-captured images. These images, obtained via cameras or drones, are analyzed in real time by 

the CNN model to identify specific weed types with high accuracy. This enables targeted weeding and 

optimized herbicide application, significantly reducing chemical usage and labor. The system can be 

integrated with mobile or IoT platforms, allowing farmers to receive real-time alerts and make timely, 

informed decisions. This approach not only enhances productivity but also supports sustainable and 

precision agriculture. By minimizing human error, improving weed classification, and ensuring 

environmental responsibility, this deep learning–driven solution represents a smart and scalable 

advancement in agricultural technology.  
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1. INTRODUCTION 

In the evolving landscape of agriculture, precision and efficiency have become essential, particularly in 

the area of weed management, where deep learning technologies are revolutionizing traditional 

practices. Historically, weed control depended on manual labor and the use of broad-spectrum 

herbicides, which were not only time-consuming and labor-intensive but also environmentally harmful 

and often imprecise. The emergence of precision agriculture, which incorporates tools such as sensors, 

GPS, and data analytics, shifted the focus toward smarter, more efficient farming methods. One of the 

most notable advancements in this field is the development of systems like "Deep Weeds," which utilize 

convolutional neural networks to accurately identify weed species from field images. These models 

learn from large datasets and are capable of detecting subtle differences between plant species, far 

beyond human capability. The primary issue addressed by this technology is the lack of scalable, 

accurate weed detection methods suitable for large farming areas. Traditional approaches often result 

in excessive herbicide use, ecological damage, and inefficient labor use. "Deep Weeds" offers a 

transformative solution by enabling targeted weed control and reducing reliance on chemicals. This 

system supports sustainable agriculture by minimizing environmental impact and optimizing the use of 
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resources. Furthermore, it allows farmers to shift focus from routine tasks to more strategic decision-

making. The motivation behind such innovation lies in the urgent need for environmentally responsible, 

cost-effective, and scalable agricultural solutions that enhance productivity while supporting long-term 

sustainability. By integrating deep learning into agriculture, weed management becomes not just more 

efficient, but also aligned with the broader goals of modern, responsible farming practices. 

2. LITERATURE SURVEY 

The model detected weeds with 97.71% precision under three conditions: full-cycle, multi-weather 

and multi-angle. The model can only be used on maize farms, which limits its application. 

Furthermore, the detection speed of Faster RCNN was 7 frames per second, which is low for real-time 

weed detection [3]. 

YOLO is a one-stage approach for detecting objects. It improves object detection speed by performing 

a CNN architecture on the image to determine the position and type of the objects in the image. The 

first YOLO version was introduced by Wang et al. in 2015 [4]. Many improved versions of YOLO, 

such as YOLOv1, YOLOv2, YOLOv3, YOLOv4, and YOLOv5, have been developed in recent years 

[5]. There are various improvements in architecture from YOLOv1 to YOLOv5. The first version of 

YOLO was detected through grid division but had low confidence. YOLO2 works with k-means anchor 

boxes. Whereas YOLO3 uses the feature pyramid network (FPN), YOLO4 is added with the generalized 

intersection over union (GIOU) loss function, the MISH activation function, and data enhancement 

through the mosaic mixup method [6]. YOLO5 is distinct from all previous releases. The most 

significant enhancements are mosaic data augmentation and auto-learning bounding box anchors [7]. 

Previous versions of YOLO have been extensively studied for application in weed detection. Mahmoud 

et al. implemented a deep weed detector/classifier for precision agriculture using the YOLOv2 fused 

with the ResNet-50 object detection model. Except for the sedge weed, their model achieved precision 

and recall of over 94% for each weed class. As they used an older version of YOLO2, it lacks an auto-

learning bounding box anchor [8]. Sanchez et al. compared three one-staged object detection models: 

YOLO-V4, YOLO5, and SSD MobileNet V2. The dataset consisted of 153 RGB images of onion 

plants. According to the study, YOLO5 performed significantly well. It consumed significantly fewer 

resources, making it suitable for real-time weed detection. At 0.195 mAP, it showed less mean inference 

time of 7.72 milliseconds as compared to the other two models. This study demonstrated that up-sizing 

the data through sample augmentation will produce better results [8]. 

In 2022, Xiojun Jin et al. evaluated three cutting-edge CNN-based architectures, You Only Look Once-

v3 (YOLO3), CenterNet, and Faster R-CNN, for bok choy, also known as Chinese white cabbage, 

detection. The most accurate model for vegetable recognition was YOLO3, which had the highest F1 

score of 0.971 as well as high precision and recall values of 0.971 and 0.970, respectively. YOLO3 had 

a similar inference time to CenterNet, but was substantially faster than Faster R-CNN. Overall, YOLO3 

had the best accuracy and computational efficiency of the deep-learning architectures studied [9]. 

Scott et al. compared the performance of the SSD model with the faster RCNN in 2020. The dataset 

contained UAV images of weeds collected from mid to late-season soybean fields. The models were 

evaluated based on values of mean intersection over union (IoU) and inference speed. The study 

concluded that the SSD model had similar precision, recall, f1 score, IoU, and inference time values 

compared to the Faster RCNN. However, the optimal SSD confidence threshold was found to be 0.1, 

indicating that this model has less confidence when weed objects are detected. Moreover, the SSD 

model incorrectly identified a row of herbicide-damaged soybean fields as weeds. Additionally, SSD 
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was unable to identify the weeds on the image’s left vertical edge. These failures identify the 

susceptibility of the SSD model in the border areas of the image [1]. 

Olaniyi et al. used a single-shot multi-box detector (SSD) for detecting weeds in the fields. The overall 

system accuracy was 86%. In addition, the algorithm had a 93% system sensitivity and an 84% precision 

value. However, the model struggled to detect very small weeds that appeared in the corners of the 

images [2]. 

3. PROPOSED SYSTEM 

This is a graphical user interface (GUI) application implemented using the Tkinter library in Python. 

The application focuses on deep learning-based weed species identification for precision agriculture. 

 

Fig.1: Block Diagram of Deep Weeds Classification 

The code begins by importing essential libraries required for various functionalities, including Tkinter 

for building the graphical user interface (GUI), Matplotlib for plotting visualizations, NumPy for 

numerical operations, scikit-learn for implementing and evaluating Support Vector Machine (SVM) 

models, Keras for deep learning tasks, and OpenCV for image processing. Global variables are 

initialized to store the filename, dataset components (X and Y), machine learning models, and accuracy 

scores. The GUI is created using Tkinter, with a custom title, size, and layout configuration to provide 

a user-friendly interface. Several key functions are defined for different operations such as loading the 

dataset, preprocessing images for SVM, building SVM and CNN models, processing and normalizing 

images, predicting weed species from test images, visualizing model accuracy and loss graphs, and 

exiting the application. GUI components include interactive buttons for uploading the dataset, building 

models, making predictions, viewing performance graphs, and exiting the application. Labels and text 

fields are used for displaying titles, button descriptions, and output results. Each GUI element, 

particularly the buttons, is linked to corresponding event-handling functions to ensure responsiveness 

upon user interaction. The application also features a main event loop (main.mainloop()) to keep the 

interface active. Overall, this system facilitates the loading and processing of weed image datasets, 

builds machine learning models using SVM and CNN techniques, and allows users to predict weed 

species via an intuitive interface. It offers a practical implementation of machine learning for 

agricultural weed detection, although certain parts of the code may require external dependencies and 

adjustments based on the runtime environment. 

3.2 Data Splitting and Preprocessing 

In this research, the preprocessing and splitting of data are crucial steps that lay the foundation for the 

successful implementation of deep learning and machine learning models for weed identification. The 

system handles two separate preprocessing pipelines—one tailored for Convolutional Neural Networks 
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(CNNs) and the other for Support Vector Machine (SVM) classification—to ensure compatibility and 

optimal performance with both model types. 

Initially, the data is acquired from a user-selected dataset directory containing weed image samples. 

These images are typically organized into labeled folders representing different weed species (e.g., 

“Snake weed”) and a “Negative” class representing background or irrelevant images. The preprocessing 

process for the CNN model involves normalization and resizing of images. Images are resized to a 

standard shape to maintain consistency in input dimensions for the neural network. Normalization is 

then applied to scale pixel values to the range [0,1], which aids in faster convergence during training. 

To reduce processing time, preprocessed image arrays (features and labels) are saved as NumPy files 

and loaded directly during subsequent runs. 

For the SVM model, the preprocessing strategy differs slightly due to the nature of traditional machine 

learning classifiers. Each image is read and resized similarly but then flattened into a one-dimensional 

array, turning the 2D image data into a single vector. These vectors form the input features, while 

corresponding class labels are stored separately. The entire dataset is converted into two NumPy 

arrays—flat_data.npy and target.npy. These are then loaded into a Pandas DataFrame to facilitate easy 

splitting and visualization. If the files are already available, the system bypasses the real-time 

preprocessing step to improve efficiency. 

Data splitting is handled using the train_test_split() function from the sklearn.model_selection module. 

The dataset is divided into training and testing subsets, usually following an 80:20 ratio. This split 

ensures that the model is trained on the majority of the data while being validated on unseen data, 

enabling an unbiased evaluation of its performance. For both CNN and SVM pipelines, the feature and 

label arrays are appropriately partitioned, and the resulting subsets are used for training the respective 

models. 

3.3 Model Building 

The model building phase involves selecting and implementing appropriate machine learning or deep 

learning algorithms tailored to the problem statement and dataset. In this research, we explore and 

compare both an existing traditional machine learning algorithm — Support Vector Machine (SVM), 

and a deep learning model — Convolutional Neural Network (CNN). The models are evaluated based 

on their classification accuracy, generalization ability, and robustness in learning complex patterns from 

the dataset. 

3.3.1 Existing Algorithm: Support Vector Machine (SVM) Classifier 

Support Vector Machine (SVM) is a supervised machine learning algorithm used primarily for 

classification tasks. It works by finding a hyperplane in an N-dimensional space (where N is the number 

of features) that distinctly classifies the data points. SVM aims to maximize the margin between the 

closest data points (support vectors) of each class, which helps to increase the model’s generalization 

ability. It can be used for both linear and non-linear classification using kernel functions such as linear, 

polynomial, RBF (Radial Basis Function), and sigmoid kernels. 

SVM works by transforming the input data into a high-dimensional space using a kernel function and 

then constructing a hyperplane that best separates the classes. The data points closest to the hyperplane 

are known as support vectors and are critical in defining the boundary. During training, the algorithm 

optimizes the hyperplane by maximizing the margin between the support vectors. Once trained, the 

model classifies new data points based on which side of the hyperplane they fall on. 
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Fig. 2: Generalised system 
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3.3.2 Proposed Algorithm: Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a deep learning algorithm specifically designed to process 

structured arrays of data such as images. CNNs are inspired by the visual processing in the human brain 

and use convolutional layers to automatically extract spatial features. A CNN model typically consists 

of convolutional layers, pooling layers, and fully connected layers. These layers work together to detect 

patterns like edges, shapes, and textures, and ultimately classify the image into categories. CNNs are 

highly effective in image recognition, video analysis, and natural language processing tasks. CNN 

works by sliding convolutional filters over the input image to create feature maps that detect various 

patterns. Pooling layers are then applied to reduce dimensionality and retain the most relevant features. 

After several layers of convolution and pooling, the high-level abstract features are passed into fully 

connected layers that function as classifiers. The network uses backpropagation to adjust the filter 

weights based on the loss computed from the predicted output and actual label. Over multiple epochs, 

the CNN learns to recognize patterns that distinguish between different classes. 

4. RESULTS AND DISCUSSION 

4.1 Dataset Description: 

The dataset contains total of 1800 images with 200 images in Chinese apple class and 200 images in 

Lantana class,200 in Negative images and 200 Parkinsonia Images,200 in Parthenium images ,200 in 

Prickly acacia,200 in Rubber vine,200 images in Siam weed,200 images in Snake weed 

Table 1: Dataset description. 

S. No. Number of images Class type 

1 200 Chinese apple 

2 200 Lantana 

3 200 Negative 

4 200 Parkinsonia 

5 200 Parthenium 

6 200 Prickly acacia 

7 200 Rubber vine 

8 200 Siam weed 

9 200 Snake weed 
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Fig.3: Sample images of Dataset used for Weed species Detection 

4.3 Results analysis 

The line graph titled "Iteration Wise Accuracy & Loss Graph" visualizes the performance of a machine 

learning model across multiple training iterations. The x-axis represents the number of iterations, while 

the y-axis indicates the Accuracy/Loss values. Two curves are plotted: the green line, representing 

accuracy, shows a steady upward trend as the number of iterations increases. Starting at around 0.55, it 

gradually improves and reaches close to 0.95 by the 9th iteration, indicating effective learning and 

increasing accuracy. On the other hand, the blue line represents the loss value, which consistently 

decreases over time. It starts at around 1.4 and drops sharply, eventually falling below 0.1. This decline 

signifies a reduction in the model's prediction error as training progresses. Overall, the graph 

demonstrates successful model training, with the increasing accuracy and decreasing loss validating the 

effectiveness of the learning process. This is a typical way to monitor and confirm the performance of 

deep learning models. 
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Fig.4 : Figure shows the accuracy and loss graph of CNN Model 

 

Fig.5: Figure shows the output results showing the output prediction is Siam 
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Fig.6: Figure shows the output results showing the output prediction is Negative 

Figure 6 Output Prediction is Negative figure shows the result of another prediction, indicating that the 

identified species is Negative. This could represent a case where the model correctly classifies an image 

as not belonging to any specific weed species. 

Figure 7 Output Prediction is Parkinsonia figure shows the result of another prediction, indicating that 

the identified species is Parkinsonia. It represents the model's classification for a specific image. 

 

 

Fig.7: Figure shows the output results showing the output prediction is Parkinsonia 

5. CONCLUSION 
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In this research, we explored the limitations of traditional manual systems used for weed species 

identification in agriculture and proposed a machine learning-based approach utilizing advanced 

algorithms such as Support Vector Machine (SVM) and Convolutional Neural Networks (CNN). The 

manual methods, although historically relied upon, are time-consuming, inconsistent, and lack 

scalability, especially for large-scale farming operations. The SVM classifier provided a foundational 

understanding of classification techniques, offering moderate accuracy with simpler datasets. However, 

its limitations in handling complex image features were overcome by the CNN model, which 

demonstrated superior performance in automatic feature extraction, high accuracy, and adaptability to 

image-based classification tasks. Our proposed CNN-based model successfully automates the detection 

and classification of weed species from image data, reducing human error, increasing speed, and 

enabling real-time decision-making in precision agriculture. The integration of deep learning methods 

in agricultural monitoring shows a clear advancement over manual practices and traditional machine 

learning models. The experimental results validate the robustness, reliability, and efficiency of CNN in 

real-world agricultural applications. This transition from manual to intelligent automated systems marks 

a significant technological leap toward smarter farming practices. 
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